

Liberté Égalité Fraternité

Impact de la qualité du modèle numérique de surface pour la correction géométrique d'images hyperspectrales à très haute résolution spatiale

H. Tardy, Y. Boucher, S. Doz, N. Sikora

ONERA - DOTA - POS

Ce document est la propriété de l'ONERA. Il ne peut être communiqué à des tiers et/ou reproduit sans l'autorisation préalable écrite de l'ONERA, et son contenu ne peut être divulgué. This document and the information contained herein is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

- Cibler l'échelle feuille avec des résolutions spatiales centimétriques
- Permettre la combinaison de données de sources différentes

Feuille étiquetée

Drone

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

- Cibler l'échelle feuille avec des résolutions spatiales centimétriques
- Permettre la combinaison de données de sources différentes

Difficulté :

Le géoréférencement au centimètre est un challenge

[2] D. Turner (2017) : RMSE 5cm / 2,5px sur sol plat

Problématique :

sursol : Cibler l'échelle feuille avec des résolutions spatiales centimétriques est-il possible ?

Feuille étiquetée

Drone

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

Cibler l'échelle feuille avec des résolutions spatiales centimétriques

Instrument pushbroom : nécessite un Modèle Numérique de Surface (MNS)

Objectif: comparer la qualité de MNS provenant de 5 sources différentes (LiDAR aéroporté, photogrammétrie, cibles GNSS et IGN photogrammétrique et LiDAR) pour l'orthorectification d'images hyperspectrales pushbroom

Nuage de point LiDAR

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

Cibler l'échelle feuille avec des résolutions spatiales centimétriques

Instrument pushbroom : nécessite un Modèle Numérique de Surface (MNS)

Objectif: comparer la qualité de MNS provenant de 5 sources différentes (LiDAR aéroporté, photogrammétrie, cibles GNSS et IGN photogrammétrique et LiDAR) pour l'orthorectification d'images hyperspectrales pushbroom

Nuage de point LiDAR

Photogrammétrique

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

Cibler l'échelle feuille avec des résolutions spatiales centimétriques

Instrument pushbroom : nécessite un Modèle Numérique de Surface (MNS)

Objectif: comparer la qualité de MNS provenant de 5 sources différentes (LiDAR aéroporté, photogrammétrie, cibles GNSS et IGN photogrammétrique et LiDAR) pour l'orthorectification d'images hyperspectrales pushbroom

Nuage de point LiDAR

Photogrammétrique

Acquisition canne RTK (GNSS) sur cible

6

L'imagerie par drone hyperspectrale pour l'arboriculture (projet CANOP: ANR-22-CE04-0002 [1]).

Contexte technique :

Cibler l'échelle feuille avec des résolutions spatiales centimétriques

Instrument pushbroom : nécessite un Modèle Numérique de Surface (MNS)

Objectif: comparer la qualité de MNS provenant de 5 sources différentes (LiDAR aéroporté, photogrammétrie, cibles GNSS et IGN photogrammétrique et LiDAR) pour l'orthorectification d'images hyperspectrales pushbroom

Nuage de point LiDAR

RÉPUBLIOUE

Photogrammétrique

Acquisition canne RTK (GNSS) sur cible

MNS IGN (20cm)

Contexte : orthorectification

Erreur planimétrique induite par une erreur de hauteur $\Delta g = \Delta h * cotan(\theta)$

Avec Δg l'erreur au sol, Δh : erreur de hauteur, θ : angle d'incidence

Contexte : orthorectification

Erreur planimétrique induite par une erreur de hauteur $\Delta g = \Delta h * cotan(\theta)$

Avec Δg l'erreur au sol, Δh : erreur de hauteur, θ : angle d'incidence

Quelques valeurs aux limites du champ de vision : Pour $\Delta h = 10$ cm, $\Delta g = 1.7$ cm pour $\theta = 10^{\circ}$ (mjolnir FOV 20°)

Site d'étude

- Verger de dimensions 100m x 35m
- Acquisitions en septembre 2024
- Structures d'arbres très différentes

Matériel

Instruments (vol à 50m):

1. Caméra hyperspectrale pushbroom VS-640 MJOLNIR NEO

- Respectivement 200 et 300 bandes VNIR (0.4nm 1nm) et SWIR (1 – 2.5nm)
- Résolution spatiale au sol : VNIR 1,35cm / SWIR
 2,7cm
- 8 lignes de vol
- Nacelle stabilisatrice GREMSY

2. Caméra Multispectrale MUSCA DELAIR :

- Voies vertes/rouge/PIR respectivement
 532nm/660nm/810nm
- Résolution 0,8cm au sol
- 7 lignes de vol, recouvrement 80%

3. LiDAR 3D RIEGL VUX 1 LR

- densité de pts > 1000 pts/m²
- Lignes de vols : 1 rangée sur 2

VS-620 MJOLNIR

Lignes de vols hyperspectral

MUSCA

Lignes de vol photogrammétrie

VUX 1 LR

Matériel

Cibles sol :

- 22 cibles photogrammétriques mesurées par canne RTK (Antenne Emlid Reach RS2+)
- RMS moyen sur les cibles : 1,5-2 cm

Mires radiométriques :

• 3 mires permaflect 50%, 5% et 80%

Cibles canopée :

Etiquetage feuille sur une partie des pêchers et abricotiers

Feuille étiquetée

Génération MNS : méthode

GNSS : Interpolation linéaire

Photogrammétrie :

Génération nuage de points Recalage manuel

Lidar

Recalage manuel

IGN

Photogrammétrie : MNS IGN à 20cm de résolution spatiale (été 2021), précision altimétrique moyenne : -6.5cm

Create A Digital Elevation Model Longitude-direction: Range min, [m] 618681.804

signed Coordinate Definit

atitude-direction: Range min. [m] 4848092.240

Help

LiDAR HD : ~10 pts / m² •

Pas de recalage manuel

Logiciels utilisés : PARGE, Qinertia, Correlator3D, Cloudcompare

Orthorectification : méthode

Processus d'orthorectification pushbroom:

- Recalage de la trajectoire
- Génération des attitudes (orientation + position) de vol
- Reprojection des pixels

Flight line

Orientation + position X,Y,Z du capteur

20

cm

14

Logiciels utilisés : pospac UAV, Hyspex, PARGE

Après génération des MNS :

Etude qualitative (visuel)

- Etude qualitative (visuel)
- RMSE Z

- Etude qualitative (visuel)
- RMSE Z
- Ecart / Variance en Z sur 3 mires permaflect

- Etude qualitative (visuel)
- RMSE Z
- Ecart / Variance en Z sur 3 mires permaflect
- RMSE XY

- Etude qualitative (visuel)
- RMSE Z
- Ecart / Variance en Z sur 3 mires permaflect
- RMSE XY
- Ecart XY relatif sur cibles canopée

Vue d'ensemble MNS IGN (20cm) **IGN LIDAR HD**

120,6

107,9

photogrammetrie

LiDAR

MNS IGN (20cm)

photogrammetrie

Zoom

IGN LIDAR HD

Lidar

Bande 1: Band 1 112,3

109,5

Orthorectification Résultats

Comparaison MNS : écarts altimétriques absolus

MNS IGN : 10 à 30cm d'écart par rapport à la référence GNSS

MNS LiDAR et photogrammétrique :

• cohérents entre eux

	MNS IGN (20cm)	LiDAR	Photogrammétrie	IGN LIDAR HD
RMSE Z (cm)	29.5	4.8	4.5	13.1

Comparaison MNS : écarts altimétriques absolus

MNS IGN : 10 à 30cm d'écart par rapport à la référence GNSS

MNS LiDAR et photogrammétrique :

cohérents entre eux

Visuellement : LiDAR plus fidèle sur les branches et la partie extérieure de l'arbre

	MNS IGN (20cm)	LiDAR	Photogrammétrie	IGN LIDAR HD
RMSE Z (cm)	29.5	4.8	4.5	13.1

Carte écart altimétrique photogrammétrie – LiDAR (en mètres)

Comparaison MNS : dispersion altimétrique

 \Rightarrow LiDAR meilleur sur les mires (moins grande dispersion)

	LiDAR	Photogrammétrie
	cibles	cibles
Range Z (cm)	7.13	30.1
variance	0.20	2.9

Lidar

photogrammétrie

Comparaison MNS : écarts planimétriques absolus

- 22 mires au sol
- 73 mesures
- 8 lignes de vol

	MNS IGN (20cm)	GNSS	LiDAR	Photogram- métrie	IGN LIDAR HD
RMSE XY (cm)	6,9	5,3	5,2	5,2	5,7
Variance	0,035	0,019	0,019	0,019	0,029

Résultats :

- MNS IGN moins bon
- LiDAR / GNSS / Photo : pas de différence

Comparaison MNS : écarts relatifs sur la canopée

MNS IGN / GNSS (sol) : Arbre 1 : impact de la date sur l'acquisition MNS LiDAR / Photo : cohérents entre eux

Etiquettes Z (m)	MNS IGN (20cm)	GNSS	Lidar	photogra mmetrie	IGN LiDAR HD	68	
moyenne au dessus du sol (109.55m)	0.13	0	1.65	1.54	0.13		. 00
							O

Comparaison MNS : écarts relatifs sur la canopée

MNS IGN / GNSS (sol) : Arbre 1 : impact de la date sur l'acquisition

MNS LiDAR / Photo : cohérents entre eux. écart de hauteur + angle de visée => de 10 à 20cm en planimétrie

Etiquettes Z (m)	MNS IGN (20cm)	GNSS	Lidar	photogra mmetrie	IGN LiDAR HD	1. 1. 1.
moyenne au dessus du sol (109.55m)	0.13	0	1.65	1.54	0.13	1.1

Ecart relatif XY (cm)	MNS IGN (20cm)	LiDAR	Photogra mmétrie	IGN LiDAR HD
GNSS	1	14.4	14.1	4.3

Etiquettes Z (m)	MNS IGN (20cm)	GNSS	Lidar	photogra mmetrie	IGN LiDAR HD	
moyenne au dessus du sol (109.45m)	0.76	0	2.10	1.33	1.16	

Ecart relatif XY (cm)	MNS IGN (20cm)	Lidar	Photogra mmétrie	IGN Lidar Hd
GNSS	10.1	19.7	13.8	11.5

Conclusion

Que nous apporte le MNS haute résolution pour ce cas d'étude ?

- Cibles au sol : gain minime . RMSE XY 6.9cm / 5,1px -> 5,2cm / 3,9px
- Cibles canopée : gain 10 à 20cm / 7,6 à 15,2px (dépendant de la hauteur / angle de visée)

Visuellement : LiDAR > photogrammétrie sur les éléments complexes (arbres / feuilles)

Limites : Les sources d'erreur sur le géoréférencement sont nombreuses et multi-factorielles (et peuvent largement atteindre la dizaine de cm, Turner and al. 2017 [2]) avant de s'attaquer à la qualité du MNS.

Impact des années d'acquisition sur le MNS

Conclusion et perspectives

Recommandations

Si l'aspect géométrique / géoréférencement du sursol n'est pas critique :

⇒ MNT fait à partir de cibles GNSS suffisant et simple à mettre en place et donne une bonne lisibilité des données

Si possible pour le sursol : privilégier le LiDAR

Dans tous les cas :

 \Rightarrow Un recalage manuel sera nécessaire. Prévoir des cibles / objets visibles dans toutes les acquisitions (Visible et LiDAR) pour les aligner

Perspectives :

⇒ Impact de la bande spectrale utilisée pour la photogrammétrie ⇒ Répéter l'analyse comparative sur d'autres cas d'application avec des cibles géométriques maitrisées

Merci pour votre attention

Des questions ?

Références

- 1. Variabilité intra-individu de la biochimie foliaire de la canopée d'arbres en verger par télédétection au service de l'agroécologie CANOP, K. Adeline (2023), <u>https://anr.fr/Projet-ANR-22-CE04-0002</u>
- PUSHBROOM HYPERSPECTRAL IMAGING FROM AN UNMANNED AIRCRAFT SYSTEM (UAS) – GEOMETRIC PROCESSING WORKFLOW AND ACCURACY ASSESSMENT, D. Turner and AI (2017), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

Comparaison MNS : dispersion altimétrique

Bande 1 (Gray) 109,138

108

Carte des minimum d'altitude

⇒ La photogrammétrie crée plus de points fantômes que le LiDAR

Lidar

Photogrammétrie