

Retrieval of Mediterranean forest traits using hybrid inversion: a comparison of multi-sensor and radiative transfer modeling

Karine Adeline¹, Xavier Briottet¹, Jean-Baptiste Féret², F. De Boissieu², Jean-Philippe Gastellu-Etchegorry³, Yingjie Wang³, Grégoire Vincent⁴, Jean-Marc Limousin⁵, Marianne Debue^{1,3}

¹ DOTA – ONERA, Univ. of Toulouse, FR; ² TETIS – INRAE, Univ. of Montpellier, FR; ³ CESBIO – UT3 Paul Sabatier, Univ. of Toulouse, FR; ⁴ AMAP – IRD, Univ. of Montpellier, FR; ⁵ CEFE – CNRS, Univ. of Montpellier, FR; Contact: karine.adeline@onera.fr

- Mediterranean forests are increasingly impacted by human activities, climate change, and water scarcity
- Forest monitoring systems are essential for evaluating biodiversity, preventing wildfires, and developing effective conservation and management plans
- Optical remote sensing provides information on various biophysical and biochemical traits identified among Remotely Sensed Essential Biodiversity Variables (RS-EBV)[GEO BON].
- Hybrid inversion for vegetation trait estimation reduces dependency to on-site measurements compared to empirical methods, improves generalization at ecosystem level
- Challenges include selecting the appropriate radiative transfer model based (RTM) depending on forest complexity, accurately parameterizing the model according to atmospheric, scene, and sensor conditions, and fine-tuning machine learning algorithms to effectively capture the spectral and spatial features of real remote sensing images.

The objective is to compare the accuracy of two canopy RTMs (1D – SAIL and 3D – DART) coupled with leaf RTM PROSPECT to estimate tree vegetation traits from a rare multi-sensor dataset having multi-/hyperspectral and airborne/satellite imagery. Such a study has been poorly investigated in particular for Mediterranean forests.

Puéchabon (PUE)

- Homogeneous dense forest (ICOS/FLUXNET networks)
- 2 plots: 100% evergreen oak (*Quercus ilex QI*)
- Tree canopy covers: 98 100%

Pic Saint Loup (PSL)

- Heterogeneous open to dense forest
 - 11 plots: mix of evergreen oaks (QI) and
 - deciduous oaks (Quercus pubescens QP)
 - Tree canopy covers: 71 100%

Remote sensing data

Airborne imaging spectroscopy : Hypersense campaign (ESA/NASA/Univ. Zurich) Satellite hyperspectral and multispectral imagery

Sensor	Spectral characteristics	Snatial	Data
		Spatial	
(used acronym)	(band number/range/resolution)	resolution	1(DD/MM/YYYY)
AVIRIS-Next	125 hands/277_2501nm/5nm	1 m	09/06/2021
Generation (AVNG1)	425 Danus/577-2501111/51111	T 111	10/06/2021
AVIRIS-Next Generation (AVNG3)	425 bands/377-2501nm/5nm	3 m	09/06/2021
PRISMA	237 bands /407-2497nm/≤ 12nm	30 m	29/06/2021
DESIS	235 bands/401-1000nm/ ~ 3.5nm	30 m	29/06/2021
SENTINEL-2	10 bands/492-2186nm/13-184 nm	10 m	26/06/2021

AVIRIS-Next Generation (https://ares-observatory.ch/esa_chime_mission_2021/), PRISMA (<u>https://www.asi.it/en/earth-science/prisma/</u>), DESIS (<u>https://eoweb.dlr.de/egp/</u>), Sentinel-2 (https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance)

In situ and laboratory data

Date: 7-8-9th June 2021

Plant Area Index (PAI) measurements:

- LAI-2200/2000 plant canopy analyzers (LI-COR Biosciences)
- Sunset & dawn, view cap of 270°, effective PAI computation with FV2200 2.1.1 software assuming homogeneous canopy

Leaf biochemistry estimations from spectral measurements:

points		
Leaf biochemistry	10	43
PAI	13	175

Conclusions and perspectives

Preliminary results to be adjusted with future investigations:

- o for DART, test more ground optical types and tree canopy covers, include branches,
- o comparison with same machine learning model and spectral features selection,

o differenciate errors coming from scene modeling, georeferencing issues and uncertainties of field measurements

- o compare these results with the use of precise 3D forest mockups generated from UAVborne LiDAR data (tools: LidR, AmapVox, pytools4dart)
- o assess the performances of future hyperspectral satellites (Biodiversity, SBG, CHIME) from AVNG1 simulations

Adeline et al. (2024). Multi-scale datasets for monitoring Mediterranean oak forests from optical remote sensing during the SENTHYMED/MEDOAK experiment in the north of Montpellier (France). Data in Brief, 110185.

Yebra et al. (2024) Globe-LFMC 2.0, an enhanced and updated dataset for live fuel moisture content research. Sci Data 11, 332.

J.B. Féret, F. de Boissieu, prospect: PROSPECT leaf radiative transfer model and inversion routines, (2023). https: //gitlab.com/jbferet/prospect

J.-B. Féret et al. Estimating functional traits in Mediterranean ecosystems using spectroscopy from leaf to canopy scale 2nd Workshop on International Cooperation in Spaceborne Imaging Spectroscopy, 19-21 october 2022, Frascati, Italy, oral. Y. Wang et al. (2022). DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images. Remote Sensing of Environment, 274, 112973.

M. Debue et al. (2023) Adequacy of Mediterranean forest simulations from DART radiative transfer model and UAV laser scanning data to hyperspectral images, in: Proc. SPIE 12727, Remote Sens. Agric. Ecosyst. Hydrol. XXV, 127270U, https://doi.org/10.1117/12.2678531.

Acknowledgements / Funding

We acknowledge ESA, NASA and the Univ. of Zurich for the CHIME-SBG Hypersense campaign, ASI and DLR for providing PRISMA and DESIS data, the DART team for their help and the CEFE Puechabon team for field data, CNES for funding support in SENTHYMED APR CNES TOSCA and ANR CANOP (grant: ANR-22-CE04-0002)

Living Planet Symposium, Vienna (Austria), 23-27th June 2025